Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Nat Commun ; 15(1): 3498, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664382

RESUMO

Molecular systems known as single-molecule magnets (SMMs) exhibit magnet-like behaviour of slow relaxation of the magnetisation and magnetic hysteresis and have potential application in high-density memory storage or quantum computing. Often, their intrinsic magnetic properties are plagued by low-energy molecular vibrations that lead to phonon-induced relaxation processes, however, there is no straightforward synthetic approach for molecular systems that would lead to a small amount of low-energy vibrations and low phonon density of states at the spin-resonance energies. In this work, we apply knowledge accumulated over the last decade in molecular magnetism to nanoparticles, incorporating Er3+ ions in an ultrasmall sub-3 nm diamagnetic NaYF4 nanoparticle (NP) and probing the slow relaxation dynamics intrinsic to the Er3+ ion. Furthermore, by increasing the doping concentration, we also investigate the role of intraparticle interactions within the NP. The knowledge gained from this study is anticipated to enable better design of magnetically high-performance molecular and bulk magnets for a wide variety of applications, such as molecular electronics.

2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38600668

RESUMO

Microbial community analysis is an important field to study the composition and function of microbial communities. Microbial species annotation is crucial to revealing microorganisms' complex ecological functions in environmental, ecological and host interactions. Currently, widely used methods can suffer from issues such as inaccurate species-level annotations and time and memory constraints, and as sequencing technology advances and sequencing costs decline, microbial species annotation methods with higher quality classification effectiveness become critical. Therefore, we processed 16S rRNA gene sequences into k-mers sets and then used a trained DNABERT model to generate word vectors. We also design a parallel network structure consisting of deep and shallow modules to extract the semantic and detailed features of 16S rRNA gene sequences. Our method can accurately and rapidly classify bacterial sequences at the SILVA database's genus and species level. The database is characterized by long sequence length (1500 base pairs), multiple sequences (428,748 reads) and high similarity. The results show that our method has better performance. The technique is nearly 20% more accurate at the species level than the currently popular naive Bayes-dominated QIIME 2 annotation method, and the top-5 results at the species level differ from BLAST methods by <2%. In summary, our approach combines a multi-module deep learning approach that overcomes the limitations of existing methods, providing an efficient and accurate solution for microbial species labeling and more reliable data support for microbiology research and application.


Assuntos
Aprendizado Profundo , Microbiota , RNA Ribossômico 16S/genética , Teorema de Bayes , Microbiota/genética , Bactérias/genética , Filogenia
3.
Anal Chem ; 96(16): 6148-6157, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38603515

RESUMO

Photodynamic therapy (PDT) provides an alternative approach to targeted cancer treatment, but the therapeutic mechanism of advanced nanodrugs applied to live cells and tissue is still not well understood. Herein, we employ the hybrid hyperspectral stimulated Raman scattering (SRS) and transient absorption (TA) microscopy developed for real-time in vivo visualization of the dynamic interplay between the unique photoswichable lanthanide-doped upconversion nanoparticle-conjugated rose bengal and triphenylphosphonium (LD-UCNP@CS-Rb-TPP) probe synthesized and live cancer cells. The Langmuir pharmacokinetic model associated with SRS/TA imaging is built to quantitatively track the uptakes and pharmacokinetics of LD-UCNP@CS-Rb-TPP within cancer cells. Rapid SRS/TA imaging quantifies the endocytic internalization rates of the LD-UCNP@CS-Rb-TPP probe in individual HeLa cells, and the translocation of LD-UCNP@CS-Rb-TPP from mitochondria to cell nuclei monitored during PDT can be associated with mitochondria fragmentations and the increased nuclear membrane permeability, cascading the dual organelle ablations in cancer cells. The real-time SRS spectral changes of cellular components (e.g., proteins, lipids, and DNA) observed reflect the PDT-induced oxidative damage and the dose-dependent death pattern within a single live cancer cell, thereby facilitating the real-time screening of optimal light dose and illumination duration controls in PDT. This study provides new insights into the further understanding of drug delivery and therapeutic mechanisms of photoswitchable LD-UCNP nanomedicine in live cancer cells, which are critical in the optimization of nanodrug formulations and development of precision cancer treatment in PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Células HeLa , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Análise Espectral Raman , Rosa Bengala/química , Rosa Bengala/farmacologia , Microscopia Óptica não Linear , Relação Dose-Resposta a Droga
4.
J Am Chem Soc ; 146(10): 6471-6475, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428039

RESUMO

Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.

5.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456498

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell cell invasion and migration assay data shown in Figs. 2C and 5D were strikingly similar to data in different form in other articles written by different authors at different research institutes, which had either already been published or had been submitted for publication at around the same time (some of which have now been retracted). Owing to the fact that certain of the data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 36: 2329­2338, 2016; DOI: 10.3892/or.2016.5007].

6.
Angew Chem Int Ed Engl ; 63(18): e202401949, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38437064

RESUMO

X-ray scintillators have gained significant attention in medical diagnostics and industrial applications. Despite their widespread utility, scintillator development faces a significant hurdle when exposed to elevated temperatures, as it usually results in reduced scintillation efficiency and diminished luminescence output. Here we report a molecular design strategy based on a hybrid perovskite (TpyBiCl5) that overcomes thermal quenching through multi-excited state switching. The structure of perovskite provides a platform to modulate the luminescence centers. The rigid framework constructed by this perovskite structure stabilized its triplet states, resulting in TpyBiCl5 exhibiting an approximately 12 times higher (45 % vs. 3.8 %) photoluminescence quantum yield of room temperature phosphorescence than that of its organic ligand (Tpy). Most importantly, the interactions between the components of this perovskite enable the mixing of different excited states, which has been revealed by experimental and theoretical investigations. The TpyBiCl5 scintillator exhibits a detection limit of 38.92 nGy s-1 at 213 K and a detection limit of 196.31 nGy s-1 at 353 K through scintillation mode switching between thermally activated delayed fluorescence and phosphorescence. This work opens up the possibility of solving the thermal quenching in X-ray scintillators by tuning different excited states.

7.
Plant Physiol Biochem ; 209: 108540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518398

RESUMO

Citrus, cultivated extensively across the globe, possesses considerable economic importance and nutritional value. With the degradation of chlorophyll and accumulation of carotenoids, mature citrus fruits develop an orange-yellow peel, enhancing fruit value and consumer preference. MYB transcription factors (TFs) exert a significant role in diverse plant developmental processes and investigating their involvement in fruit coloration is crucial for developing new cultivars. This work aimed to characterize a citrus TF, CrMYB33, whose expression was found to be positively correlated with carotenoid biosynthesis during fruit ripening. The interference of CrMYB33 expression in citrus fruit resulted in inhibition of carotenoid accumulation, down-regulation of carotenoid biosynthetic genes, and a slower rate of chlorophyll degradation. Conversely, overexpression of CrMYB33 in tomato (Solanum lycopersicum) enhanced chlorophyll degradation and carotenoid biosynthesis, resulting in a deeper red coloration of the fruits. Furthermore, the transcription of associated genes was upregulated in CrMYB33-overexpressing tomato fruits. Additional assays reveal that CrMYB33 exhibits direct links and activation of the promoters of lycopene ß-cyclase 2 (CrLCYb2), and ß-carotene hydroxylases 2 (CrBCH2), both crucial genes in the carotenoid biosynthetic pathway. Additionally, it was found to inhibit chlorophyllase (CrCLH), a gene essential in chlorophyll degradation. These findings provide insight into the observed changes in LCYb2, BCH2, and CLH expression in the transgenic lines under investigation. In conclusion, our study revealed that CrMYB33 modulates carotenoid accumulation and chlorophyll degradation in citrus fruits through transcriptionally activating genes involved in metabolic pathways.


Assuntos
Citrus , Citrus/genética , Citrus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
J Am Chem Soc ; 146(13): 9413-9421, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506128

RESUMO

Precise control of cellular signaling events during programmed cell death is crucial yet challenging for cancer therapy. The modulation of signal transduction in cancer cells holds promise but is limited by the lack of efficient, biocompatible, and spatiotemporally controllable approaches. Here we report a photodynamic strategy that modulates both apoptotic and pyroptotic cell death by altering caspase-3 protein activity and the associated signaling crosstalk. This strategy employs a mitochondria-targeting, near-infrared activatable probe (termed M-TOP) that functions via a type-I photochemical mechanism. M-TOP is less dependent on oxygen and more effective in treating drug-resistant cancer cells, even under hypoxic conditions. Our study shows that higher doses of M-TOP induce pyroptotic cell death via the caspase-3/gasdermin-E pathway, whereas lower doses lead to apoptosis. This photodynamic method is effective across diverse gasdermin-E-expressing cancer cells. Moreover, the M-TOP mediated shift from apoptotic to pyroptotic modulation can evoke a controlled inflammatory response, leading to a robust yet balanced immune reaction. This effectively inhibits both distal tumor growth and postsurgical tumor recurrence. This work demonstrates the feasibility of modulating intracellular signaling through the rational design of photodynamic anticancer drugs.


Assuntos
Gasderminas , Neoplasias , Humanos , Caspase 3/metabolismo , Apoptose , Transdução de Sinais , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspase 1/metabolismo , Caspase 1/farmacologia
9.
Int J Biol Macromol ; 264(Pt 1): 130474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428769

RESUMO

The biocompatible, biodegradable and strong polyvinyl alcohol-based films have been widely investigated and used in the field of active packaging. To endow with diverse function, this paper firstly prepared lignin nanoparticles loaded with potassium sorbate (LNP@PS) as additives to exploit additional antibacterial, UV blocking, oxygen barrier, and water barrier properties. Besides, tannin acid (TA) was incorporated for compensating and further enhancing mechanical properties. Results showed that the PVA-based composite films containing 3 % LNP@PS and 5 % TA could achieve the optimal tensile strength at 74.51 MPa, water vapor permeability at 7.015·10-13·g·cm/cm2·s·Pa and oxygen permeability at 1.93 cm3/m2·24 h MPa, which was an 165 % of increase, 47 % and 112 % of reduction respectively compared to pure PVA films. Additionally, the composite films exhibited apparently superior bacteria and oxygen resistance properties evidenced by microbial infection and free radical scavenging performance. In addition, the slow-release effect of PS assisted the strawberry preservation with an extension of 3 days, which provided a promising novel route to prepare active food packaging material.


Assuntos
Lignina , Nanopartículas , Taninos , Álcool de Polivinil , Ácido Sórbico/farmacologia , Oxigênio
10.
Food Sci Nutr ; 12(3): 1857-1868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455159

RESUMO

Ginseng (Panax ginseng Meyer) has long been consumed as a medicinal or functional food in East Asia. It is available as dried white ginseng (WG) and steamed red ginseng (RG), which might differ in ginsenoside profiles. We compared ginsenoside types of RG and WG using UPLC-MS/MS and evaluated how they biologically affected heart of healthy rats by recording electrocardiography, measuring biochemical indicators, analyzing cardiac tissue slides, and Ca2+ signaling pathways. About 25 and 29 ginsenosides were detected in WG and RG, respectively, and the total ginsenoside content of RG contained was nearly 1.8 times higher than that of WG. Among them, ginsenoside Rg4, ginsenoside Rg6, ginsenoside Rh4, ginsenoside Rk1, ginsenoside Rg5, and protopanaxadiol were detected only in RG, while 20(R)-ginsenoside Rg2 was detected only in WG. Male SD rats treated by intraperitoneal injection of WG or RG extracts were similar to the control in terms of electrocardiography and heart histology, indicating that both may not significantly affect the rats' myocardial function. However, WG and RG may induce mild cardiac injury resulting in increased cardiac collagen and creatine kinase levels. In addition, upregulated p-CaMKII and PPARδ and downregulated SERCA2a for WG and RG treatments were further associated with increased cardiac contractility. In general, RG had less effect on the heart of healthy rats than WG, which may be due to RG having a high proportion of low-polar ginsenosides.

12.
J Phys Chem Lett ; 15(9): 2606-2615, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38420927

RESUMO

We investigate the intricate relationship among temperature, pH, and Brownian velocity in a range of differently sized upconversion nanoparticles (UCNPs) dispersed in water. These UCNPs, acting as nanorulers, offer insights into assessing the relative proportion of high-density and low-density liquid in the surrounding hydration water. The study reveals a size-dependent reduction in the onset temperature of liquid-water fluctuations, indicating an augmented presence of high-density liquid domains at the nanoparticle surfaces. The observed upper-temperature threshold is consistent with a hypothetical phase diagram of water, validating the two-state model. Moreover, an increase in pH disrupts the organization of water molecules, similar to external pressure effects, allowing simulation of the effects of temperature and pressure on hydrogen bonding networks. The findings underscore the significance of the surface of suspended nanoparticles for understanding high- to low-density liquid fluctuations and water behavior at charged interfaces.

13.
J Am Chem Soc ; 146(10): 6566-6579, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422385

RESUMO

Superior photostability, minimal phototoxicity, red-shifted absorption/emission wavelengths, high brightness, and an enlarged Stokes shift are essential characteristics of top-tier organic fluorophores, particularly for long-lasting super-resolution imaging in live cells (e.g., via stimulated emission depletion (STED) nanoscopy). However, few existing fluorophores possess all of these properties. In this study, we demonstrate a general approach for simultaneously enhancing these parameters through the introduction of 9,9-dimethyl-9,10-dihydroacridine (DMA) as an electron-donating auxochrome. DMA not only induces red shifts in emission wavelengths but also suppresses photooxidative reactions and prevents the formation of triplet states in DMA-based fluorophores, greatly improving photostability and remarkably minimizing phototoxicity. Moreover, the DMA group enhances the fluorophores' brightness and enlarges the Stokes shift. Importantly, the "universal" benefits of attaching the DMA auxochrome have been exemplified in various fluorophores including rhodamines, difluoride-boron complexes, and coumarin derivatives. The resulting fluorophores successfully enabled the STED imaging of organelles and HaloTag-labeled membrane proteins.


Assuntos
Corantes Fluorescentes , Humanos , Rodaminas , Microscopia de Fluorescência/métodos , Células HeLa , Ionóforos
14.
Nature ; 626(8000): 765-771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383627

RESUMO

Photonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves1,2 with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics3,4. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition2. Supercritical coupling occurs when the near-field coupling between dark and bright modes compensates for the negligible direct far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum enhancement imposed by non-radiative loss, even when the radiative quality factor is divergent. Our experimental design consists of a photonic-crystal nanoslab covered with upconversion nanoparticles. Near-field coupling is finely tuned at the nanostructure edge, in which a coherent upconversion luminescence enhanced by eight orders of magnitude is observed. The emission shows negligible divergence, narrow width at the microscale and controllable directivity through input focusing and polarization. This approach is relevant to various physical processes, with potential applications for light-source development, energy harvesting and photochemical catalysis.

15.
Eur J Cardiothorac Surg ; 65(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341657

RESUMO

OBJECTIVES: Tracheoesophageal fistula (TEF) is characterized by abnormal connectivity between the posterior wall of the trachea or bronchus and the adjacent anterior wall of the oesophagus. Benign TEF can result in serious complications; however, there is currently no uniform standard to determine the appropriate surgical approach for repairing TEF. METHODS: The PubMed database was used to search English literature associated with TEF from 1975 to October 2023. We employed Boolean operators and relevant keywords: 'tracheoesophageal fistula', 'tracheal resection', 'fistula suture', 'fistula repair', 'fistula closure', 'flap', 'patch', 'bioabsorbable material', 'bioprosthetic material', 'acellular dermal matrix', 'AlloDerm', 'double patch', 'oesophageal exclusion', 'oesophageal diversion' to search literature. The evidence level of the literature was assessed based on the GRADE classification. RESULTS: Nutritional support, no severe pulmonary infection and weaning from mechanical ventilation were the 3 determinants for timing of operation. TEFs were classified into 3 levels: small TEF (<1 cm), moderate TEF (≥1 but <5 cm) and large TEF (≥5 cm). Fistula repair or tracheal segmental resection was used for the small TEF with normal tracheal status. If the anastomosis cannot be finished directly after tracheal segmental resection, special types of tracheal resection, such as slide tracheoplasty, oblique resection and reconstruction, and autologous tissue flaps were preferred depending upon the site and size of the fistula. Oesophageal exclusion was applicable to refractory TEF or patients with poor conditions. CONCLUSIONS: The review primarily summarizes the main surgical techniques employed to repair various acquired TEF, to provide references that may contribute to the treatment of TEF.


Assuntos
Procedimentos de Cirurgia Plástica , Fístula Traqueoesofágica , Humanos , Fístula Traqueoesofágica/cirurgia , Fístula Traqueoesofágica/etiologia , Traqueia/cirurgia , Retalhos Cirúrgicos/cirurgia
16.
Diagn Pathol ; 19(1): 29, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341587

RESUMO

BACKGROUND: Cytotoxic lymphocytes (CLs) express potent toxins, including perforin (P) and granzyme-B (G), which brings about target cell death. The purpose of this study was to evaluate the killing capacity of tumor-infiltrating CLs by means of P and G analysis, and explore the association with lymph node metastasis in papillary carcinoma of thyroid (PTC) without Hashimoto's thyroiditis (HT). METHODS: Infiltration of lymphocytes in PTC was observed in frozen sections. Both fresh tumor tissues and paracancerous tissues with lymphocyte infiltration were collected and prepared into a single cell suspension. Flow cytometry was used to detect the percentages of CD3+P+, CD3+G+, CD8+P+, and CD8+G+ T lymphocytes (TLs) and CD16-CD56+P+ and CD16-CD56+G+ natural killer (NK) cells. Finally, we investigated differential expression of P and G in NK cells and cytotoxic T lymphocytes (CTLs) in paired tumor tissues (group T, n = 44) and paracancerous tissues (group N, n = 44) from patients with PTC with the BRAF V600E mutation. Furthermore, patients were divided into two groups according to whether cervical central lymph node metastasis (CCLNM) existed: group A (with lymph node metastases, n = 27) and group B (with nonlymph node metastases, n = 17). Patients were also divided into three groups according to the total number of positive CCLNM: group B, group C (with low-level lymph node metastases, less than 5, n = 17) and group D (with high-level lymph node metastases, no less than 5, n = 10). RESULTS: The percentage of CD3+P+ CTLs was significantly higher in group N than in group T (P < 0.05). The percentage of CD8+G+ CTLs was significantly higher in group T than in group N (P < 0.05). The percentages of CD3+G+, CD16-CD56+P+and CD16-CD56+G+ NK cells showed no significant difference in either group T or group N (P > 0.05). The percentages of CD3+P+ CTLs in group A and group C were significantly higher in the paracancerous tissue than in the tumor tissue (P < 0.05). The percentages of CD8+G+ CTLs in group A and group C were significantly higher in the tumor tissues than in the paracancerous tissues (P < 0.05). The percentage of CD16-CD56+G+ NK cells in group D was significantly higher in the tumor tissues than in the paracancerous tissues (P < 0.05). CONCLUSIONS: The killing capacity of infiltrating CLs in PTC differed between tumor tissues and paracancerous tissues. In cases with CCLNM, higher expression of CD16-CD56+G+ NK cells in tumor tissues may be associated with a high risk of lymph node metastasis.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Metástase Linfática , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias da Glândula Tireoide/patologia , Células Matadoras Naturais/patologia , Mutação
17.
Chemistry ; 30(15): e202303707, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38221317

RESUMO

Fluorogenic dyes with high brightness, large turn-on ratios, excellent photostability, favorable specificity, low cytotoxicity, and high membrane permeability are essential for high-resolution fluorescence imaging in live cells. In this study, we endowed these desirable properties to a rhodamine derivative by simply replacing the N, N-diethyl group with a pyrrole substituent. The resulting dye, Rh-NH, exhibited doubled Stokes shifts (54 nm) and a red-shift of more than 50 nm in fluorescence spectra compared to Rhodamine B. Rh-NH preferentially exists in a non-emissive but highly permeable spirolactone form. Upon binding to lysosomes, the collective effects of low pH, low polarity, and high viscosity endow Rh-NH with significant fluorescence turn-on, making it a suitable candidate for wash-free, high-contrast lysosome tracking. Consequently, Rh-NH enabled us to successfully explore stimulated emission depletion (STED) super-resolution imaging of lysosome dynamics, as well as fluorescence lifetime imaging of lysosomes in live cells.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Corantes Fluorescentes/química , Rodaminas/química , Lisossomos/química , Células HeLa , Microscopia de Fluorescência/métodos
18.
Nat Mater ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191632

RESUMO

High-sensitivity radiation detectors for energetic particles are essential for advanced applications in particle physics, astronomy and cancer therapy. Current particle detectors use bulk crystals, and thin-film organic scintillators have low light yields and limited radiation tolerance. Here we present transmissive thin scintillators made from CsPbBr3 nanocrystals, designed for real-time single-proton counting. These perovskite scintillators exhibit exceptional sensitivity, with a high light yield (~100,000 photons per MeV) when subjected to proton beams. This enhanced sensitivity is attributed to radiative emission from biexcitons generated through proton-induced upconversion and impact ionization. These scintillators can detect as few as seven protons per second, a sensitivity level far below the rates encountered in clinical settings. The combination of rapid response (~336 ps) and pronounced ionostability enables diverse applications, including single-proton tracing, patterned irradiation and super-resolution proton imaging. These advancements have the potential to improve proton dosimetry in proton therapy and radiography.

19.
Angew Chem Int Ed Engl ; 63(10): e202319853, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38242857

RESUMO

Developing fluorogenic probes for simultaneous live cell labeling of multiple targets is crucial for understanding complex cellular events. The emerging [4+1] cycloaddition between tetrazine and isonitriles holds promise as a bioorthogonal tool, yet existing tetrazine probes lack reactivity and fluorogenicity. Here, we present the development of a series of tetrazine-functionalized bioorthogonal probes. By incorporating pyrazole adducts into the fluorophore scaffolds, the post-reacted probes displayed remarkable fluorescence turn-on ratios, up to 3184-fold. Moreover, these modifications are generalizable to various fluorophores, enabling a broad emission range from 473 to 659 nm. Quantum chemical calculations further elucidate the turn-on mechanisms. These probes enable the simultaneous labeling of multiple targets in live cells, without the need for a washing step. Consequently, our findings pave the way for advanced multiplex imaging and detection techniques for cellular studies.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Linhagem Celular Tumoral , Reação de Cicloadição , Imagem Óptica/métodos
20.
Nano Lett ; 24(8): 2503-2510, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38258747

RESUMO

X-ray scintillators have utility in radiation detection, therapy, and imaging. Various materials, such as halide perovskites, organic illuminators, and metal clusters, have been developed to replace conventional scintillators due to their ease of fabrication, improved performance, and adaptability. However, they suffer from self-absorption, chemical instability, and weak X-ray stopping power. Addressing these limitations, we employ alkali metal doping to turn nonemissive CsPb2Br5 into scintillators. Introducing alkali metal dopants causes lattice distortion and enhances electron-phonon coupling, which creates transient potential energy wells capable of trapping photogenerated or X-ray-generated electrons and holes to form self-trapped excitons. These self-trapped excitons undergo radiative recombination, resulting in a photoluminescence quantum yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3 nGyair s-1 and an imaging resolution of 21 lp mm-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...